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Knowledge of fluid pressure is important to predict the presence of oil and gas in
reservoirs. A mathematical model for the prediction of fluid pressures is given by a
time-dependent diffusion equation. Application of the finite element method leads
to a system of linear equations. A complication is that the underground consists of
layers with very large differences in permeability. This implies that the symmet-
ric and positive definite coefficient matrix has a very large condition number. Bad
convergence behavior of the CG method has been observed; moreover, a classical
termination criterion is not valid in this problem. After diagonal scaling of the ma-
trix the number of extreme eigenvalues is reduced and it is proved to be equal to
the number of layers with a high permeability. For the IC preconditioner the same
behavior is observed. To annihilate the effect of the extreme eigenvalues a deflated
CG method is used. The convergence rate improves considerably and the termination
criterion becomes again reliable. Finally a cheap approximation of the eigenvectors
is proposed. © 1999 Academic Press

Key Wordsporous media; preconditioned conjugate gradients; deflation; Poisson
equation; discontinuous coefficients across layers; eigenvectors; finite element
method.

1. INTRODUCTION

One of the problems an oil company is confronted with when drilling for oil is t
presence of high fluid pressures within the rock layers of the subsurface. Knowledge c
fluid pressures is important to predict the presence of oil and gas in reservoirs and is
factor in the safety and environmental aspects of drilling a well.
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A mathematical model for the prediction of fluid pressures on a geological time scale
based on conservation of mass and Darcy’s law ([6, 14]). This leads to a time-depen
diffusion equation, where the region also changes in time as rocks are deposited or erc
The Euler backward method is used for the time integration. In order to solve this diffusi
equation, the finite element method is applied. As a consequence, in each time-step, al
system of equations has to be solved. Due to nonlinear effects and the time-dependen
the region the coefficients of the diffusion equation change in each time-step.

In practical applications we are faced with large regions in a three-dimensional sp
and as a consequence a large number of finite elements are necessary. The matrix it
sparse, but due to fill-in a direct method requires too much memory to fit in core. Moreo\
since in each time-step we have a good start vector, only iterative methods are accep
candidates for the solution of the linear systems of equations.

Since these equations are symmetric a preconditioned conjugate gradient method (IC
[26] is a natural candidate. Unfortunately, an extra complication of the physical proble
we are dealing with is that the underground consists of layers with very large difference:
permeability. For example, in shale the permeability is of ordef 10 101! (D), whereas
in sandstone it is of order 1 to 16(D). Hence a contrast of 1@ is common in the system of
equations to be solved. Other applications where the coefficients have large discontinu
are electrical power networks [21], groundwater flow [1, 18], semiconductors [11], a
electromagnetics modeling [19].

A large contrast in coefficients usually leads to a very ill-conditioned system of eqt
tions to be solved. Since the convergence rate of ICCG depends on the distribution of
eigenvalues of the matrix one may expect a slow convergence rate. In Section 2 it is sh
that this is indeed the case. An even more alarming phenomenon is that numerical re:
suggest that ICCG has reached a certain accuracy but that the actual accuracy is ir
orders of magnitude worse. This is due to the ill-conditioned matrix, which results in t
standard termination criterion no longer being reliable. To our knowledge, this observat
has not been made before.

An analysis of the problem in Section 3 shows that without preconditioning there ¢
many small eigenvalues in the matrix, but using a diagonal preconditioned matrix this nt
ber is reduced to the number of sandstone layers that do not reach the earth’s surface.
analysis suggests a way of solving the problems mentioned. In Section 4 it is shown tha
convergence and reliability of the termination criterion is considerably improved by proje
ing the solution in each iteration onto the orthogonal complement of the space spanne
the eigenvectors corresponding to the very small eigenvalues of the preconditioned me
The idea is that, assuming that the vectors are written as linear combination of eigenvec
the components corresponding to these specific eigenvectors do not play a role any n
As aresult, one may expect much faster convergence and a reliable termination criterio
clear disadvantage of this method is of course that one has to compute the specific eigel
tors. In Section 5, however, it is shown how one can approximate these eigenvectors ec
based on physical arguments. Furthermore, it is shown that even approximate eigenve
lead to fast convergence. Finally, in Section 6, some numerical evidence on our impro
algorithm is given.

The CG [20] method, combined with a preconditioner, is a popular iterative method |
solving large algebraic systems of linear equations, when the system matrix is symme
and positive definite. Many practical preconditioners are based on an Incomplete Chol
factorization. The resulting ICCG method was first described in [26]. Various alternativ
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have since been formulated, such as MICCG [17], RICCG [4], and ILUM [32]. Recentl
number of preconditioners have been proposed for the discretized Poisson equation, \
the rate of convergence does not depend on the grid size. Examples are NGILU [37]
DRIC [31]. A comparison of these and related preconditioners has been given in [7].

It is well known that the convergence rate of CG depends on the ratio of the larg
and smallest eigenvalues of the matrix. To explain the superlinear convergence of
Ritz values have to be taken into account [38]. The convergence rate depends on
active eigenvalues. An eigenvalue is active when the error has a non zero component
corresponding eigenvector. This observation is used to solve singular systems with th
method (see [3, pp. 476—480]). In [23] the initial approximation is projected so that the <
residualis perpendicular to the kernel of the matrix. In[2] the start approximation is projec
in such a way that the error has no components in the eigenvectors corresponding to
eigenvalues. This increases the smallest active eigenvalue and thus the convergenc
After the projection the original CG method has been used in both papers. An incomy
factorization preconditioner for singular systems has been investigated in [30].

In [28, 29] a deflated CG method was proposed. In every CG iteration the residus
projected onto a chosen subspace. The projected CG method used in this work [40] is cl
related to these deflated CG methods. The main difference is the choice of the subspac
base our choice on the physical properties of the problem considered. Another differen
the implementation. Various implementations are possible to incorporate a projection
specify an implementation such that the basis of our subspace consist of vectors with |
zero elements. Related work has recently been presented in [21, 35].

For the solution of singular non symmetric systems we referto [8]. Deflation is also use
iterative methods for non-symmetric systems of equations [5, 9, 10, 13, 24, 27, 33]. In i
papers the smallest eigenvalues have been shifted away from the origin. The eigenve
are in general obtained from the Arnoldi method. The motivation to use deflation is
enhance the convergence of restarted GMRES [34]. Finally deflation techniques have
been combined with solution methods for systems of nonlinear equations [36, 39].

2. STATEMENT OF THE PROBLEM AND EXPERIMENTS WITH ICCG

As mentioned in the Introduction, in each time-step we have to solve a system of equa
that arises from the discretization of a 3D time-dependent diffusion equation. In this pa
however, we are only interested in the convergence behavior of the ICCG proces:
problems with layers with large contrasts in the coefficients. For that reason we simy
the equation considerably and assume that we have to solve the stationary linearize
diffusion equation in a layered region,

—div(eVp) =0, 1)

with p the fluid pressure angl the permeability. At the earth’s surface the fluid pressure
prescribed. When the pressure field is required in a domain it is not practical to calculat
pressure in every position of the earth’s crust. Therefore the domain of interest is restri
artificially. We assume that the lowest layer is bounded by an impermeable layer, so t
is no flux through this boundary. The artificial vertical boundaries are taken at a sea
fault, or far away from the reservoir. Again a zero flux condition is a reasonable assumg
at these boundaries. For the physical background of this problem we refer to Chay
of [14].
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FIG. 1. Artificial configuration with seven straight layers.

For our model problem we assume thah sandstone is equal to 1 asdn shale is equal
to 1077, Furthermore, the Dirichlet boundary condition at the earth’s surface is set equal t
The solution of Eq. (1) with these boundary conditions is of coprsel, but if we start with
p =0 or arandom vector, our linear solver will not notice the difference with areal probler
Numerical experiments show that the choice of one of these start vectors has only mare
effects. An advantage of this problem is that the exact error can easily be calculated.
Equation (1) is discretized by a standard finite element method using bilinear quadrilat
elements. This results in a system of linear equations to be solved, which will be denote
Ax=Dh. In our first experiment we have solved this problem on a rectangular domain w
seven straight layers (Fig. 1), using CG without preconditioner. The termination criteri
is based on the estimate of the smallest eigenvalue during the iterations by a Lan
method as described by Kaasschieter [22]. Figure 2 shows the norm of the residual,
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FIG. 2. Convergence behavior of CG without preconditioning.
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norm of the true error, and also the estimate of the smallest eigenvalue as function @
number of iterations. In each layer 10 elements in the horizontal and 5 elements ir
vertical direction are used. From this figure the following remarkable observations ma
made.

1. The residual decreases monotonically between iterations 1 and 30. For the itera
between 31 and 1650 we have an erratic behavior of the residual. After iteration 165(
again have a monotone decreasing of the residual.

2. If we required an accuracy of order¥Qthe process would stop after approximatel
25 iterations, since then the residual divided by the estimate of the smallest eigenval
small enough. Unfortunately the true erryk (— x«||2) is still large. The estimated error is
not sharp, because the estimate of the smallest eigenvalue is very inaccurate. Since th
pressure is used in the prediction of the presence of oil and gas in reservoirs the true
should be small.

3. Initerations 1-30 it looks as if the smallest eigenvalue is of ordet,1thereas from
iteration 31 it is clear that the smallest eigenvalue is of order 10

So we see that the bad condition leads to a large number of iterations. Moreover, for prac
values of the error, the termination criterion is not reliable.

Repeating the same experiment using an IC preconditioning gives a drastic reductic
the number of iterations, but still the same conclusions as for the case without precc
tioning can be drawn. Figure 3 shows the convergence behavior. Note that the horiz
scales in Figs. 2 and 3 are quite different. Although the number of iterations (48) is sr
compared to the number for the nonpreconditioned algorithm (1650), still it is quite la
compared to the number of unknowns (385). Note that the norm of the true error doe:
decrease belowK,(A)u||x — Xg||2, wherec is a small constant ang(~10-%) is the unit
round off.

10 20 30 40 50 60
number of iterations

FIG. 3. Convergence behavior of CG with IC preconditionimg & LTL).
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3. ANALYSIS OF THE ITERATION MATRIX

In order to gain more insight into the convergence behavior, we have investigated
eigenvalues of the matrix. If we compute all eigenvalues of the discretization matrix, tf
we see that the number of small eigenvalues (i.e., of ordef)1& equal to the number
of nodes that are entirely in the shale layers, plus 3. One can expect that this numb
at least equal to the number of internal “shale” nodes, since all nonzero elements in
corresponding rows of the matrix are of order 1.0rhe number 3 will be explained later on.
The iteration process only converges, once all small eigenvalues have been “discovere

When we use an IC preconditioner, and compute all eigenvalues of the discretiza
matrix multiplied by the preconditioning matrix, we see that only three eigenvalues are
order 107, All other eigenvalues are of order 1. This observation appears to be true
all kinds of preconditioners, even for a simple diagonal scaling. The convergence beha
shown in Fig. 3 can be explained by these three eigenvalues. Once a small eigenvalu
been “discovered” by the CG process, the residual increases considerably. Only whe
small eigenvalues are approximated by the Krylov subspace does the true error decre:

A possible explanation for the fact that there are only three small eigenvalues in
preconditioned case is the following. The preconditioner will scale the Laplacian equat
per layer in such a way that the rows with small elements at the diagonal will get element
order 1. However, in ashale layer we have a Neumann boundary condition at the “side” w:
But at the top and bottom we have a sandstone layer. Since the permeability in sandsto
much larger than that in shale, the pressure in the sandstone may be considered more c
constant. So from the view of a shale layer we have a kind of Dirichlet boundary conditi
for the top and bottom. On the other hand, for the sandstone layers, the shale layers m:
regarded as more or less impermeable. The interface condition is approximately a Neun
boundary condition. So for each sandstone layer between two shale layers we have to
a Laplacian equation with approximately Neumann boundary conditions. Only at the
layer do we have a given Dirichlet boundary condition. Since the solution of the Neume
problem is fixed up to an arbitrary additive constant we way expect a small eigenvalue
each sandstone layer that has no explicit Dirichlet boundary conditions. So it is reason
to expect three small eigenvalues in this particular example. A mathematical proof of t
observation for a diagonal preconditioner is given below.

Let our rectangular region consist of a sequencerof2 plain layers of equal thick-
ness with a sand layer at the top and alternating shale and sand layers further down.
permeability of the sand and shale layers is 1 respectivel¥). We choose a rectangular
mesh with a uniform mesh sizein both x andy direction such that the sand/shale inter-
faces coincide with element boundaries. We discretize (1) by applying the standard |
order bilinear FE-method and numerical integration with the element corner-points as
integration points. Numbering the unknowns locally from left to right and top to botton
the element matrixs for a single element in the sand is

1
-1 0

1 0 -
1

1 —

NI

NIFR NI

NI
NI

The element matrix in shale ¢S.
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Assembling all the element matrices leads to a system of equatimasb, where A
is a symmetrian x m M-matrix. If we group the equations and unknowns belonging to
single layer together, add the unknowns and equations of each sand/shale interface
corresponding sand group and order the groups from top to bo#ob@comes a block
tridiagonal matrix, for which we introduce the following notation:

Ho I] Sand+ interface
l1 Lq J]-_r Shale
Jq Hi 1] Sand+ interface
I, L Jér Shale
b . Sand+ interface

L, JT Shale

n

Jn Hn Sand+ interface

S S S S s S S

a h a h a h a

n a n a n a n

d I d 1 d I d
e e e

Let AN, APT andAP be the FE-matrices of the Laplacian on a single layer with respective
Neumann boundary conditions on all boundaries, Dirichlet boundary conditions on the
boundary, and Dirichlet boundary conditions on top and bottom boundaries. The mkitrice
fori > 1 consist of two parts: the contribution of the elements in the sand and the contribu
of the neighboring elements in the shale. The sand part is equg,tand the only nonzero
entries in the shale part are the diagonal elements for the interface unknowns an
entries which relate neighboring unknowns in the interface. Their values are respective
(e on the boundary) ange/2. H; is equal toH; apart from the entries relating to the giver
pressures at the top boundary, which have been eliminated. The matriees equal to
eAP. 1; andJ, have only nonzero entries on the diagonal which relates interface unkno
to their neighboring shale unknown. Their values-aee(—e/2 on the boundary).

Let D be the diagonal oA and letA= D~%2AD~Y/2 be the diagonally scaled matrix.
Similarly to A, D can be partitioned into submatric&", the diagonal ofH;, and D},
the diagonal ofL;. The diagonal elements d@" are 4 (2 on the boundary) except for
the interface nodes where the values (am 2¢) ((1+ ¢) on the boundary). The dlagonal
elements oD, L are & (2¢ onthe boundary)A can be partitioned into submatr|dd$, LI , M i
andJ; with

Hi = (DiH)il/zHi (DiH)il/Z’
Li = (DiL)il/ZLi (DiL)il/z’
fi = (o) i (D)
3= (B3 (0h)
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To study the influence of the parametei the eigenvalue{éxf&}lg j<m Of the scaled matrix
A, we splitA into ane-dependent and anindependent part,

A=A+E€, )

whereA is the block-diagonal matrix with as first blodk™, the diagonally scaledPT, and
then further down alternatingl, the scaled\p, andA}), the scaled\(). The eigenvalues
A+ of A are equal to the eigenvalues of all its diagonal bIocAks{L?E}lfj <my; {/\?}151- <My
and {)L’J-\‘}lfjsn13 be the ordered eigenvalues of respectivaly’, AR, and AN. It is well
known that

M =0, (3)
and that there exists a greatest lower bod®@dh) such that
c2(h) < A;\‘ <2 for2<j<ms,
c2(h) <APT <2 forl<j<my, (4)

cZ(h)gA?fZ forl<j <my,

This bound is used to separate the very small eigenvalues from the rest of the spect
The blocks of the symmetric tridiagonal block matare given by

&11=Ho—APT andfori<i <n,

Sizia=1li,
Saa =L — AR, %)
Eaiyra = Ji,

A AN
Eit1oiv1 = Hi — Ay,

For O<i <n, &;.12+1 contain only nonzero matrix entries which relate nodes in th
interface to their neighboring interior nodes. Their values are

-1+J1+¢€
22+ 2¢
For 1<i <n, & =0 and&i_12, & .2i-1, Ea2i+1, and Ey 412 have only nonzero el-
ements on the off-diagonal, relating interface nodes to their direct neighbors in the |
permeable layer. The values of these entries are

—Je
ﬁ = O(Ve). (7)

Let Q be the block-diagonal orthogonal matrix such AN Q = AA, and letB be a block
diagonal matrix the blocks of which are defined by

Boit12i41 = (/€/€3)1 forO<i <n, ®)
By = | forl<i <n,

wherec3 is an arbitrary constant. If we now defide= B-1QT AQBthen

A=B1QTAQB+B'Q'éQB=A+¢. Q)
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The blocks ofA just contain the eigenvalues of (which satisfy Eq. (3) and inequalities
(4)) and for the blocks of we find that

the elements 0&?_2i+1,2i+1 = O(e),
the elements chTzi_lyzi andgzwm = 0(c3),
the elements ofzi 21 and&z 42211 = O(e/C3),

the elements of 5 = 0.

(10)

If we now choosec3 < c2(h)/4 and subsequently small enough, apply Gershgorin's
theorem toA, and account for the fact that each eigenvalué i also an eigenvalue &
and in the interval (0, 2), then

0<A1-A=O(e) forl<j <n,

A (11)
c2(h)/2+0() <Af <2 forn+l<j<m

This proves the following theorem:

THEOREM3.1. For e small enough the diagonally scaled matrix % AD~%2 has only
n eigenvalues of @), where n is the number of high-permeability layérs=1, e.g. sandl
lying between low-permeability layefs = ¢, e.g. shalg

As one of the reviewers has remarked, similar results have been proved but ye
published in [15, 16].

4. THE DEFLATED ICCG METHOD

In this section we derive a deflated incomplete Choleski Conjugate Gradient metl
This method can be used to solve the system of linear equations for the fluid pres:
In the previous section it was shown that the diagonal scaled matrix has only a s
number of very small eigenvalues. A comparable spectrum has been observed for tt
preconditioned matrix. Deflation is used to annihilate the effect of the very small eigenva
on the convergence of the ICCG method.

Let Ax= b be the system of equations to be solved, wheiga symmetric and positive
definite (SPD) matrix. LeM be the incomplete Choleski decompositionfAkatisfying
A~ LLT =M, whereL is a sparse lower triangular matrix ailis SPD. ICCG consists
of the application of CG to the preconditioned system

L*AL Ty =L, x=L"Ty,whereL "= (L HT.

DefineA=L~-*AL~T andb= L ~'b. Note thatA is SPD.

To define the Deflated ICCG method we assume that the vagtars. , v, are given and
form an independent set. These vectors define a Spacsparivs, ..., vy} and a matrix
V =[v1...vn]. A special choice fow; is the eigenvectors corresponding to the smalle
eigenvalues ofs, henceAv; = Ajvi, 0 <A1 <An... <Am.

The operatoP defined byP =1 — V E-1(AV)T with E = (AV)TV is a projection with
the following properties (the matrik € R"*" is symmetric and positive definite):

THEOREM4.1. The operator P has the following properties

() PV =0and PTAV =0,
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(i) P~2 =P,
(i) AP=PTA.
Proof. Properties (i) and (iii) are easily checked. The proof of (ii) runs as follows:
PZ=( —VEYAV)H(I - VE YAV
=P-VEYAV)" + VEYAV)'VE XAV) = P. =

COROLLARY 4.1. The matrixAP is symmetric and positive semi-definite.

Remark 4.1. Whenu; are eigenvectors o with norm equal to 1 the®® =1 —V VT
because v; = §; .

We assume that the start veckgiis zero, otherwise the Deflated ICCG algorithm shoulc
be applied toA(x — Xg) =b — Axo. To speed up the convergence of ICCG we assume th
the space’ is chosen such that it contains the slow converging components and split
vectory into two parts

y=( —P)y+ Py. (12)

The first part { — P)y is the component of contained inY, whereas the second péty
is perpendicular t& in the (., .) s inner product. The first part is determined from

(I —=P)yy=VE*AV)'y=VE *Vh. (13)

(I — P)y is cheaply computable because the dimensions@fx n) are much less than
the dimensions oA(m x m). To compute the second pdty we useAPy= PTAy=PTb
and solvey from

PTAy = P'h. (14)

The singular system (14) has a solution beca®Seis an element of the Rang@{A). A
solutiony of (14) may contain an arbitrary element of N@#TA) = V. SincePV =0, Py
is uniquely determined.

When we apply the CG algorithm to the symmetric positive semi-definite system (1
we get the deflated ICCG algorithm:

DICCG1.

k=0, Yo = 0, f)l =fp= PTLflb,
while |[fx|l2 > ¢ do
k=k+1;
_ _(kasfkn)
HT (B PTARY
Yie = Yk-1 + ok Py
P = o1 — o PTARy;
_ (i .
ék - <r”k:f,ft71>’ .
Prt1 = P + B Py
end while
In order to get an approximation gi=L "x) the vectory is multiplied byP and substituted
into (12).
In order to determine the matrix we have to compute (or approximate) the eigenvector
of the matrix A. Unfortunately these eigenvectors contain many nonzero elements in «
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application. Furthermore they are hard to predict on physical grounds. The eigenspa
the matrixL ~"L~! A corresponding to the smallest eigenvalues can be approximated k
the span oh vectors, which are obtained on physical grounds. In Section 5 it appears
these vectors have only nonzero elements in one high-permeability layer and its neighb
low-permeability layers. For that reason we rewrite the deflated ICCG algorithm as follo

Define P=L"TPLT,fe=P L Yr,=L"2PTr =L, with fx=P'ry, and z =
L=TL~y. Sinceyk=LTx and L x = L xx_1 + ap Py, We chooseP, = LT px. Substi-
tution in DICCGL1 leads to

DICCG2.
k=0,fo= P_Tro, P1=21 = LiTLilfo;
while ||f|l2 > ¢ do
k=k+1;

o (Pke1.Zken)
= Tp.PTARY’

Xic = Xi—1 + otk Py
f = Frer — akPTApG
Zy = LfTLflf‘\k;

__ (fezo
Px = (Fk-1,2-1)’
Pr+1 = Zx + Bk Px;
end while

It is easy to verify that the projectioR = L~TP LT has the following properties:

Properties ofP.

1. P=1-VEAV)" whereV =L~V andE = (AV)TV = (AV)"V,
2. PV =0, andPTAV =0,
3. PTA=AP.

The vectorx can be split into two parts (compare Eq. (12)):
x = (I — P)x + Px. (15)
The first part can be calculated as
(I —P)x = VE 'V Ax=VE Vb

For the second part we project the solutiqrobtained from DICCG2 1P X

For the special choice that are eigenvectors ok, v are eigenvectors df "TL~1A. In
that case the projection can be writtenRas= | — V (LLTV)T.

A well known convergence result for CG appliedAy= b is [25, p. 187]

VK =1
Iy — Yl <20y — Yol & JK 11

whereK = KZ(A) = Am/A1. Since the results obtained from DICCG1 and DICCG2 ai
equal we restrict our convergence research to DICCGL1. When we choede; . .. vy]
wherev; are the normalized eigenvectorsAfit is easy to verify that

(16)

PTAyy =0 fori=1,...,n,
PTAUi =Ajvyp fori=n+1...,m
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On the space spéh,1, ..., vm} the norm| - |lprz=1 - Il zp iS well defined. Using this
norm together with inequality (16) it can be proved that
VK = 1\*
Py — Pwl2 < 2VK|Py— P <)
IPYy—P¥ll2 < Py —Pyoll2 K11
whereK = Am/Ans1. This inequality predicts a speed up of convergence wheg An. 1.
SincePy and Py are elements of spé,. 1, ..., vm} the following expression holds:
IPTb — PTAyl2 = [APY — APYll2 = Ant1llPY — Pkll2. (17)

So the following termination strategy can be used: estirhatevia Kaasschieter’'s method
[22] and terminate DICCG1 when

IPTD— PTAyl2 <
)\n+1
This together with inequality (17) implies thaPy — P |2 <e.

In Kaasschieter [22] the termination criterion is derived for the unpreconditioned syst
Ax=Dh. It is easy to generalize this to the preconditioned systemAL Ty =L"1b. In
DICCG?2 the criterion is also used when CG is applied to the left preconditioned syst
M~tAx= M~1b, whereM = LTL. A similar termination strategy can be applied using the
(in)equalities

1

min

-1
M~ rill2.

IX = Xll2 = [ATMM il < [((MTEA) M )2 < -

Sincea (M~1A) =0 (L~*AL™T), Kaasschieter’s procedure to estimate the smallest eige
value can be used, which leads to the stopping critgfMmr|l2 < Amine.

5. ACHOICE OF PROJECTION VECTORS

A good choice of the projection vectors is important to obtain an efficient Deflated ICC
method. In this section we restrict ourselves to the class of problems defined in Sectio
An analysis of the matrix (Section 3) shows that the spectrum of this matrix contains m:
small eigenvalues (of order 10). For the preconditioned matrix, the number of small
eigenvalues is drastically reduced. This number is proportional to the amount of sands
layers. In Sectin 4 a Deflated ICCG method is given, which is very suitable to problerr
where the matrix has a small number of extreme eigenvalues.

We consider the problem as shown in Fig. 1. As a first choice weugkg, vz equal to
the three eigenvectors @ corresponding to the small eigenvalues. We use DICCG1 wit
P =1 —VVT'. The vectors; should be stored, sa8extra memory positions are needed.
Furthermore in every iteration of DICCG1, the projecti®rshould be applied to a vector,
which costs three inner products and three vector updates extra per iteration.

Drawbacks of this choice are:

1. the determination of the eigenvectors can be expensive,
2. the amount of extra memory and work per iteration grows, when the number of sir
eigenvalues increases.

For the determination of the eigenvectors an inverse (Krylov) iteration can be used, howe
this costs more work than the solution of the original system. In our application the flt
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First sigenvector Secend elgenvector

Value
c
Value

20 25 30 35 40 ] 10 25 kL] s 40

5 10 15 15 20 30
Gridpoint in vertical direction Gridpoint in vertical direction

Third eigenvector

Value

-0.25¢

5 10 15 20 25 30 35 40
Gridpaint in vertical direction

FIG. 4. The vertical cross section of the eigenvectors corresponding to the small eigenvalues.

pressure is needed in every time iteration. The differences in the matrices in consec
time-steps are relatively small. In such a problem DICCG1, with eigenvectors as projec
vectors, can be feasible when the eigenvectors are only computed at a small number o
steps.

Because of these drawbacks we use another approach, motivated by the propert
the eigenvectors; = L ~1v; of L=TL~1A, corresponding to the small eigenvalues. For th
problem considered a vertical cross section of the eigenvectors is plotted in Fig. 4.
cross-sections have the following properties:

—their value is constant in sandstone layers,
—their value is zero in the first sandstone layer,
—in the shale layers their graph is linear.

So the space spén, vz, vz} is identical to the space spam, wo, w3}, where the vertical
cross sections afy are defined by

—the value ofw; is one in the + 1th sandstone layer and zero in the other sandsto
layers,
—their graph is continuous in the whole domain and linear in the shale layers.

Soinstead of DICCG1 with the eigenvectors, DICCG2 is appliedWithspafws, wa, ws}.
Since the vectors; are no eigenvectors it is necessary to stoyeand Aw;. Due to the
sparseness two memory vectors are sufficient to stote afurthermore, the elements of
Aw; are only nonzero at the grid points connected to the interfaces oftttehale layer.
Thus two memory vectors are also sufficient to store all vecdars In the same way the
sparseness can be used to save CPU time. It is possible to implement the projection s
the extra amount of work per iteration is less than two inner products and two vector upc
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independent of the number of small eigenvalues. This makes the DICCG2 algorithm v
attractive for this kind of problems.

We have also solved problems where shale and sandstone layers are slightly cul
Again DICCG2, with projection vectors defined in the same way as above, proved to
an efficient solution algorithm. If we assume that the sandstone layers without a Dirict
condition are numbered from 1 tg then we propose to use DICCG2 with the projectior
vectorsw; chosen as:

—the value ofw; is one in the th sandstone layer and zero in the other sandstone laye
—in the shale layersy; satisfies

—div(cVwj) =0, (18)

and on the interfaces it satisfies a Dirichlet boundary condition equal to the constant v:
0 or 1 of the neighboring sandstone layer.

For our original problem, this choice leads to the same projection vectors as before.
solution of (18) amounts to solving the same system of equations at a much smaller dor
without the extreme contrasts in the coefficients. In fact this process is similar to a dom
decomposition method (compare [12, 16]).

6. NUMERICAL EXPERIMENTS

In order to test the Deflated ICCG method we have applied DICCG2 to the seven stra
layers problem defined in Section 2. The three projection vectors are defined as in the
vious section. For this straight layers case these vectors span exactly the space of the
eigenvectors corresponding to the small eigenvalues. Figure 5 shows the convergenc
havior of the DICCG2 method, the estimate of the smallest eigenvalue as well as the
error. To facilitate comparison the norm of the error using ICCG and DICCG2 is given
Fig. 6. Since one iteration of DICCG2 costs approximately 30% more CPU time than ¢

(=30

-1
Ml

2 4 6 8 10 12 14 16
number of iterations

FIG.5. Convergence behavior of DICCG2 for the straight layers problem.
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107t DICCG2 ICCG

5 10 15 20 25 30 35 40 45 50 55
number of iterations

FIG. 6. Norm of the error for the straight layers problem.

iteration of ICCG, we have a large improvement when the deflated method is used. Be
that, the decrease of the residual is now a measure for the error, so that we have a re
termination criterion.

Our intention is to use the DICCG2 method also for more complicated regions, wt
we only have “approximate” eigenvectors. Therefore we have replaced the straight Iz
in our example by curved layers as shown in Figs. 7 and 8. Both domains are a st

AN ANAVANANAN AN AN ANANA N ANANANANAN)

CSISISINISISIN,

WAAN

AANANANNAANNAD
I\I\I\/V\I\I\/\I\/\IV/\\I\I\/\[\I\I\/\!

FIG. 7. Mesh used in the parallel arcs layered problem.



400 VUIK, SEGAL, AND MEIJERINK

FIG. 8. Mesh used for straight and curved layers.

R?. The number of elements is exactly the same as for the straight layers region. For tt
examples the graphs of the vertical cross sections of the eigenvectors are no longer |i
in the shale layers. Nevertheless we use exactly the same projection vectors in DICCC
for the straight layers problem. The convergence behavior of the DICCG2 method app
to the mesh of Fig. 7 is shown in Fig. 9. The number of iterations has been increa
compared to the straight layers case, but the overall behavior is the same. Application o

10 T T T T
A
min
lx=xL,
" IM~"e )l
10 k''2 A
5 10 15 20

number of iterations

FIG. 9. Convergence behavior of DICCG?2 for the parallel arcs problem.
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DICCG2 method to the mesh of Fig. 8 leads to the same convergence behavior as th
for the straight layers (Fig. 5). Presumably, the projection vectors are good approxima
of the eigenvectors in these cases, although the relative difference between them is of
101, From our limited number of experiments it is clear that the DICCG2 method is
enormous improvement compared to the classical ICCG method, provided the approxi
eigenvectors are a reasonable estimate of the true eigenvectors.

7. CONCLUSIONS

It has been shown that the preconditioned Conjugate Gradient method for layered
lems with extreme contrasts in the coefficients has a very erratic convergence behavior
residual shows large bumps and moreover the decrease of the residual cannot be use
liable termination criterion. Only when all eigenvectors corresponding to small eigenval
are detected, which means that the smallest Ritz values are converged to the smallest
values, isthe convergence behavior more or less as usual. In order to solve this problem
method called DICCG has been developed that projects the contribution of the eigenve
corresponding to the small eigenvalues onto the null space. This new method has exc
convergence properties and, more important, a reliable termination criterion. Even if we
approximations of these eigenvectors based on physical arguments still the deflated |
method performs very well.

It is our aim to apply the DICCG method to large time-dependent 3D problems wit
realistic number and shape of layers. A point to be solved, however, is how to create
approximate eigenvectors in more general configurations including inclusions. We think
it is sufficient to solve the original problem for each completely enclosed shale layer v
appropriate boundary conditions. Since we are only dealing with approximate eigenve
we expect that the solution of the subproblem may be done with moderate accuracy.
choice of the approximate eigenvectors, as well as the sensitivity of the method to
accuracy of these approximate eigenvectors, is the subject of our present research.
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