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Knowledge of fluid pressure is important to predict the presence of oil and gas in
reservoirs. A mathematical model for the prediction of fluid pressures is given by a
time-dependent diffusion equation. Application of the finite element method leads
to a system of linear equations. A complication is that the underground consists of
layers with very large differences in permeability. This implies that the symmet-
ric and positive definite coefficient matrix has a very large condition number. Bad
convergence behavior of the CG method has been observed; moreover, a classical
termination criterion is not valid in this problem. After diagonal scaling of the ma-
trix the number of extreme eigenvalues is reduced and it is proved to be equal to
the number of layers with a high permeability. For the IC preconditioner the same
behavior is observed. To annihilate the effect of the extreme eigenvalues a deflated
CG method is used. The convergence rate improves considerably and the termination
criterion becomes again reliable. Finally a cheap approximation of the eigenvectors
is proposed. c© 1999 Academic Press

Key Words:porous media; preconditioned conjugate gradients; deflation; Poisson
equation; discontinuous coefficients across layers; eigenvectors; finite element
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1. INTRODUCTION

One of the problems an oil company is confronted with when drilling for oil is the
presence of high fluid pressures within the rock layers of the subsurface. Knowledge of the
fluid pressures is important to predict the presence of oil and gas in reservoirs and is a key
factor in the safety and environmental aspects of drilling a well.
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A mathematical model for the prediction of fluid pressures on a geological time scale is
based on conservation of mass and Darcy’s law ([6, 14]). This leads to a time-dependent
diffusion equation, where the region also changes in time as rocks are deposited or eroded.
The Euler backward method is used for the time integration. In order to solve this diffusion
equation, the finite element method is applied. As a consequence, in each time-step, a linear
system of equations has to be solved. Due to nonlinear effects and the time-dependence of
the region the coefficients of the diffusion equation change in each time-step.

In practical applications we are faced with large regions in a three-dimensional space
and as a consequence a large number of finite elements are necessary. The matrix itself is
sparse, but due to fill-in a direct method requires too much memory to fit in core. Moreover,
since in each time-step we have a good start vector, only iterative methods are acceptable
candidates for the solution of the linear systems of equations.

Since these equations are symmetric a preconditioned conjugate gradient method (ICCG)
[26] is a natural candidate. Unfortunately, an extra complication of the physical problem
we are dealing with is that the underground consists of layers with very large differences in
permeability. For example, in shale the permeability is of order 10−6 to 10−11 (D), whereas
in sandstone it is of order 1 to 10−4 (D). Hence a contrast of 10−7 is common in the system of
equations to be solved. Other applications where the coefficients have large discontinuities
are electrical power networks [21], groundwater flow [1, 18], semiconductors [11], and
electromagnetics modeling [19].

A large contrast in coefficients usually leads to a very ill-conditioned system of equa-
tions to be solved. Since the convergence rate of ICCG depends on the distribution of the
eigenvalues of the matrix one may expect a slow convergence rate. In Section 2 it is shown
that this is indeed the case. An even more alarming phenomenon is that numerical results
suggest that ICCG has reached a certain accuracy but that the actual accuracy is in fact
orders of magnitude worse. This is due to the ill-conditioned matrix, which results in the
standard termination criterion no longer being reliable. To our knowledge, this observation
has not been made before.

An analysis of the problem in Section 3 shows that without preconditioning there are
many small eigenvalues in the matrix, but using a diagonal preconditioned matrix this num-
ber is reduced to the number of sandstone layers that do not reach the earth’s surface. This
analysis suggests a way of solving the problems mentioned. In Section 4 it is shown that the
convergence and reliability of the termination criterion is considerably improved by project-
ing the solution in each iteration onto the orthogonal complement of the space spanned by
the eigenvectors corresponding to the very small eigenvalues of the preconditioned matrix.
The idea is that, assuming that the vectors are written as linear combination of eigenvectors,
the components corresponding to these specific eigenvectors do not play a role any more.
As a result, one may expect much faster convergence and a reliable termination criterion. A
clear disadvantage of this method is of course that one has to compute the specific eigenvec-
tors. In Section 5, however, it is shown how one can approximate these eigenvectors easily,
based on physical arguments. Furthermore, it is shown that even approximate eigenvectors
lead to fast convergence. Finally, in Section 6, some numerical evidence on our improved
algorithm is given.

The CG [20] method, combined with a preconditioner, is a popular iterative method for
solving large algebraic systems of linear equations, when the system matrix is symmetric
and positive definite. Many practical preconditioners are based on an Incomplete Choleski
factorization. The resulting ICCG method was first described in [26]. Various alternatives
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have since been formulated, such as MICCG [17], RICCG [4], and ILUM [32]. Recently a
number of preconditioners have been proposed for the discretized Poisson equation, where
the rate of convergence does not depend on the grid size. Examples are NGILU [37] and
DRIC [31]. A comparison of these and related preconditioners has been given in [7].

It is well known that the convergence rate of CG depends on the ratio of the largest
and smallest eigenvalues of the matrix. To explain the superlinear convergence of CG,
Ritz values have to be taken into account [38]. The convergence rate depends only on
active eigenvalues. An eigenvalue is active when the error has a non zero component in the
corresponding eigenvector. This observation is used to solve singular systems with the CG
method (see [3, pp. 476–480]). In [23] the initial approximation is projected so that the start
residual is perpendicular to the kernel of the matrix. In [2] the start approximation is projected
in such a way that the error has no components in the eigenvectors corresponding to small
eigenvalues. This increases the smallest active eigenvalue and thus the convergence rate.
After the projection the original CG method has been used in both papers. An incomplete
factorization preconditioner for singular systems has been investigated in [30].

In [28, 29] a deflated CG method was proposed. In every CG iteration the residual is
projected onto a chosen subspace. The projected CG method used in this work [40] is closely
related to these deflated CG methods. The main difference is the choice of the subspace. We
base our choice on the physical properties of the problem considered. Another difference is
the implementation. Various implementations are possible to incorporate a projection. We
specify an implementation such that the basis of our subspace consist of vectors with many
zero elements. Related work has recently been presented in [21, 35].

For the solution of singular non symmetric systems we refer to [8]. Deflation is also used in
iterative methods for non-symmetric systems of equations [5, 9, 10, 13, 24, 27, 33]. In these
papers the smallest eigenvalues have been shifted away from the origin. The eigenvectors
are in general obtained from the Arnoldi method. The motivation to use deflation is to
enhance the convergence of restarted GMRES [34]. Finally deflation techniques have also
been combined with solution methods for systems of nonlinear equations [36, 39].

2. STATEMENT OF THE PROBLEM AND EXPERIMENTS WITH ICCG

As mentioned in the Introduction, in each time-step we have to solve a system of equations
that arises from the discretization of a 3D time-dependent diffusion equation. In this paper,
however, we are only interested in the convergence behavior of the ICCG process for
problems with layers with large contrasts in the coefficients. For that reason we simplify
the equation considerably and assume that we have to solve the stationary linearized 2D
diffusion equation in a layered region,

−div(σ∇ p) = 0, (1)

with p the fluid pressure andσ the permeability. At the earth’s surface the fluid pressure is
prescribed. When the pressure field is required in a domain it is not practical to calculate the
pressure in every position of the earth’s crust. Therefore the domain of interest is restricted
artificially. We assume that the lowest layer is bounded by an impermeable layer, so there
is no flux through this boundary. The artificial vertical boundaries are taken at a sealing
fault, or far away from the reservoir. Again a zero flux condition is a reasonable assumption
at these boundaries. For the physical background of this problem we refer to Chap. 12
of [14].
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FIG. 1. Artificial configuration with seven straight layers.

For our model problem we assume thatσ in sandstone is equal to 1 andσ in shale is equal
to 10−7. Furthermore, the Dirichlet boundary condition at the earth’s surface is set equal to 1.
The solution of Eq. (1) with these boundary conditions is of coursep= 1, but if we start with
p= 0 or a random vector, our linear solver will not notice the difference with a real problem.
Numerical experiments show that the choice of one of these start vectors has only marginal
effects. An advantage of this problem is that the exact error can easily be calculated.

Equation (1) is discretized by a standard finite element method using bilinear quadrilateral
elements. This results in a system of linear equations to be solved, which will be denoted as
Ax= b. In our first experiment we have solved this problem on a rectangular domain with
seven straight layers (Fig. 1), using CG without preconditioner. The termination criterion
is based on the estimate of the smallest eigenvalue during the iterations by a Lanczos
method as described by Kaasschieter [22]. Figure 2 shows the norm of the residual, the

FIG. 2. Convergence behavior of CG without preconditioning.
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norm of the true error, and also the estimate of the smallest eigenvalue as function of the
number of iterations. In each layer 10 elements in the horizontal and 5 elements in the
vertical direction are used. From this figure the following remarkable observations may be
made.

1. The residual decreases monotonically between iterations 1 and 30. For the iterations
between 31 and 1650 we have an erratic behavior of the residual. After iteration 1650 we
again have a monotone decreasing of the residual.

2. If we required an accuracy of order 10−2, the process would stop after approximately
25 iterations, since then the residual divided by the estimate of the smallest eigenvalue is
small enough. Unfortunately the true error (‖x− xk‖2) is still large. The estimated error is
not sharp, because the estimate of the smallest eigenvalue is very inaccurate. Since the fluid
pressure is used in the prediction of the presence of oil and gas in reservoirs the true error
should be small.

3. In iterations 1–30 it looks as if the smallest eigenvalue is of order 10−2, whereas from
iteration 31 it is clear that the smallest eigenvalue is of order 10−7.

So we see that the bad condition leads to a large number of iterations. Moreover, for practical
values of the error, the termination criterion is not reliable.

Repeating the same experiment using an IC preconditioning gives a drastic reduction of
the number of iterations, but still the same conclusions as for the case without precondi-
tioning can be drawn. Figure 3 shows the convergence behavior. Note that the horizontal
scales in Figs. 2 and 3 are quite different. Although the number of iterations (48) is small
compared to the number for the nonpreconditioned algorithm (1650), still it is quite large
compared to the number of unknowns (385). Note that the norm of the true error does not
decrease belowcK2(A)u‖x− x0‖2, wherec is a small constant andu(≈10−16) is the unit
round off.

FIG. 3. Convergence behavior of CG with IC preconditioning (M = LT L).
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3. ANALYSIS OF THE ITERATION MATRIX

In order to gain more insight into the convergence behavior, we have investigated the
eigenvalues of the matrix. If we compute all eigenvalues of the discretization matrix, then
we see that the number of small eigenvalues (i.e., of order 10−7), is equal to the number
of nodes that are entirely in the shale layers, plus 3. One can expect that this number is
at least equal to the number of internal “shale” nodes, since all nonzero elements in the
corresponding rows of the matrix are of order 10−7. The number 3 will be explained later on.
The iteration process only converges, once all small eigenvalues have been “discovered.”

When we use an IC preconditioner, and compute all eigenvalues of the discretization
matrix multiplied by the preconditioning matrix, we see that only three eigenvalues are of
order 10−7. All other eigenvalues are of order 1. This observation appears to be true for
all kinds of preconditioners, even for a simple diagonal scaling. The convergence behavior
shown in Fig. 3 can be explained by these three eigenvalues. Once a small eigenvalue has
been “discovered” by the CG process, the residual increases considerably. Only when all
small eigenvalues are approximated by the Krylov subspace does the true error decrease.

A possible explanation for the fact that there are only three small eigenvalues in the
preconditioned case is the following. The preconditioner will scale the Laplacian equation
per layer in such a way that the rows with small elements at the diagonal will get elements of
order 1. However, in a shale layer we have a Neumann boundary condition at the “side” walls.
But at the top and bottom we have a sandstone layer. Since the permeability in sandstone is
much larger than that in shale, the pressure in the sandstone may be considered more or less
constant. So from the view of a shale layer we have a kind of Dirichlet boundary condition
for the top and bottom. On the other hand, for the sandstone layers, the shale layers may be
regarded as more or less impermeable. The interface condition is approximately a Neumann
boundary condition. So for each sandstone layer between two shale layers we have to solve
a Laplacian equation with approximately Neumann boundary conditions. Only at the top
layer do we have a given Dirichlet boundary condition. Since the solution of the Neumann
problem is fixed up to an arbitrary additive constant we way expect a small eigenvalue for
each sandstone layer that has no explicit Dirichlet boundary conditions. So it is reasonable
to expect three small eigenvalues in this particular example. A mathematical proof of this
observation for a diagonal preconditioner is given below.

Let our rectangular region consist of a sequence of 2n+ 1 plain layers of equal thick-
ness with a sand layer at the top and alternating shale and sand layers further down. The
permeability of the sand and shale layers is 1 respectivelyε >0. We choose a rectangular
mesh with a uniform mesh sizeh in bothx andy direction such that the sand/shale inter-
faces coincide with element boundaries. We discretize (1) by applying the standard first
order bilinear FE-method and numerical integration with the element corner-points as the
integration points. Numbering the unknowns locally from left to right and top to bottom,
the element matrixS for a single element in the sand is

S=


1 − 1

2 − 1
2 0

− 1
2 1 0 − 1

2

− 1
2 0 1 − 1

2

0 − 1
2 − 1

2 1

 .

The element matrix in shale isεS.
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Assembling all the element matrices leads to a system of equationsAx= b, whereA
is a symmetricm×m M-matrix. If we group the equations and unknowns belonging to a
single layer together, add the unknowns and equations of each sand/shale interface to the
corresponding sand group and order the groups from top to bottom,A becomes a block
tridiagonal matrix, for which we introduce the following notation:

H0 I T
1

I1 L1 JT
1

J1 H1 I T
2

I2 L2 JT
2

J2
. . .

. . .

. . .

Ln JT
n

Jn Hn



Sand+ interface

Shale

Sand+ interface

Shale

Sand+ interface

Shale

Sand+ interface

S S S S S S S
a h a h a h a
n a n a n a n
d l d l d l d

e e e

Let1N
h ,1

DT
h , and1D

h be the FE-matrices of the Laplacian on a single layer with respectively
Neumann boundary conditions on all boundaries, Dirichlet boundary conditions on the top
boundary, and Dirichlet boundary conditions on top and bottom boundaries. The matricesHi

for i ≥ 1 consist of two parts: the contribution of the elements in the sand and the contribution
of the neighboring elements in the shale. The sand part is equal to1N

h , and the only nonzero
entries in the shale part are the diagonal elements for the interface unknowns and the
entries which relate neighboring unknowns in the interface. Their values are respectively 2ε

(ε on the boundary) and−ε/2. H1 is equal toHi apart from the entries relating to the given
pressures at the top boundary, which have been eliminated. The matricesLi are equal to
ε1D

h . Ii andJi have only nonzero entries on the diagonal which relates interface unknowns
to their neighboring shale unknown. Their values are−ε (−ε/2 on the boundary).

Let D be the diagonal ofA and let Â= D−1/2AD−1/2 be the diagonally scaled matrix.
Similarly to A, D can be partitioned into submatricesDH

i , the diagonal ofHi , and DL
i ,

the diagonal ofLi . The diagonal elements ofDH
i are 4 (2 on the boundary) except for

the interface nodes where the values are(2+ 2ε) ((1+ ε) on the boundary). The diagonal
elements ofDL

i are 4ε (2ε on the boundary).̂Acan be partitioned into submatricesĤ i , L̂ i , Î i ,
and Ĵi with

Ĥ i =
(
DH

i

)−1/2
Hi
(
DH

i

)−1/2
,

L̂ i =
(
DL

i

)−1/2
Li
(
DL

i

)−1/2
,

Î i =
(
DL

i

)−1/2
Ii
(
DH

i−1

)−1/2
,

Ĵi =
(
DH

i

)−1/2
Ji
(
DL

i

)−1/2
.
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To study the influence of the parameterε on the eigenvalues{λÂ
j }1≤ j≤m of the scaled matrix

Â, we split Â into anε-dependent and anε-independent part,

Â = 1̂+ E, (2)

where1̂ is the block-diagonal matrix with as first block1̂DT
h , the diagonally scaled1DT

h , and
then further down alternatinglŷ1D

h , the scaled1D
h , and1̂N

h , the scaled1N
h . The eigenvalues

λ1̂j of 1̂ are equal to the eigenvalues of all its diagonal blocks. Let{λDT
j }1≤ j≤m1, {λD

j }1≤ j≤m2,
and {λN

j }1≤ j≤m3 be the ordered eigenvalues of respectively1̂DT
h , 1̂D

h , and1̂N
h . It is well

known that

λN
1 = 0, (3)

and that there exists a greatest lower boundc2(h) such that

c2(h) ≤ λN
j ≤ 2 for 2≤ j ≤ m3,

c2(h) ≤ λDT
j ≤ 2 for 1≤ j ≤ m1, (4)

c2(h) ≤ λD
j ≤ 2 for 1≤ j ≤ m2,

This bound is used to separate the very small eigenvalues from the rest of the spectrum.
The blocks of the symmetric tridiagonal block matrixE are given by

E1,1 = Ĥ0− 1̂DT
h and for 1≤ i ≤ n,

E2i,2i−1 = Î i ,

E2i,2i = L̂ i − 1̂D
h , (5)

E2i+1,2i = Ĵi ,

E2i+1,2i+1 = Ĥ i − 1̂N
h .

For 0≤ i ≤ n, E2i+1,2i+1 contain only nonzero matrix entries which relate nodes in the
interface to their neighboring interior nodes. Their values are

−1+√1+ ε
2
√

2+ 2ε
= O(ε). (6)

For 1≤ i ≤ n, E2i,2i = 0 andE2i−1,2i , E2i,2i−1, E2i,2i+1, andE2i+1,2i have only nonzero el-
ements on the off-diagonal, relating interface nodes to their direct neighbors in the low
permeable layer. The values of these entries are

−√ε
2
√

2+ 2ε
= O(

√
ε). (7)

Let Q be the block-diagonal orthogonal matrix such thatQT1̂Q=31̂, and letB be a block
diagonal matrix the blocks of which are defined by

B2i+1,2i+1 = (√ε/c3)I for 0≤ i ≤ n,

B2i,2i = I for 1≤ i ≤ n,
(8)

wherec3 is an arbitrary constant. If we now definēA= B−1QT ÂQB then

Ā = B−1QT1̂QB+ B−1QTEQB= 1̄+ Ē . (9)
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The blocks of1̄ just contain the eigenvalues of1̂ (which satisfy Eq. (3) and inequalities
(4)) and for the blocks of̄E we find that

the elements of̄E2i+1,2i+1 = O(ε),

the elements of̄E2i−1,2i andĒ2i+1,2i = O(c3),

the elements of̄E2i,2i+1 andĒ2i+2,2i+1 = O(ε/c3),

the elements of̄E2i,2i = 0.

(10)

If we now choosec3< c2(h)/4 and subsequentlyε small enough, apply Gershgorin’s
theorem toĀ, and account for the fact that each eigenvalue ofÂ is also an eigenvalue of̄A
and in the interval (0, 2), then

0< λÂ
j = O(ε) for 1≤ j ≤ n,

c2(h)/2+ O(ε) ≤ λÂ
j < 2 for n+ 1≤ j ≤ m.

(11)

This proves the following theorem:

THEOREM3.1. For ε small enough the diagonally scaled matrix D−1/2AD−1/2 has only
n eigenvalues of O(ε), where n is the number of high-permeability layers(σ = 1,e.g. sand)
lying between low-permeability layers(σ = ε, e.g. shale).

As one of the reviewers has remarked, similar results have been proved but yet not
published in [15, 16].

4. THE DEFLATED ICCG METHOD

In this section we derive a deflated incomplete Choleski Conjugate Gradient method.
This method can be used to solve the system of linear equations for the fluid pressure.
In the previous section it was shown that the diagonal scaled matrix has only a small
number of very small eigenvalues. A comparable spectrum has been observed for the IC
preconditioned matrix. Deflation is used to annihilate the effect of the very small eigenvalues
on the convergence of the ICCG method.

Let Ax= b be the system of equations to be solved, whereA is a symmetric and positive
definite (SPD) matrix. LetM be the incomplete Choleski decomposition ofA satisfying
A≈ LLT=M , whereL is a sparse lower triangular matrix andM is SPD. ICCG consists
of the application of CG to the preconditioned system

L−1AL−Ty = L−1b, x = L−Ty,whereL−T = (L−1)T.

Define Ã= L−1AL−T andb̃= L−1b. Note thatÃ is SPD.
To define the Deflated ICCG method we assume that the vectorsv1, . . . , vn are given and

form an independent set. These vectors define a spaceV = span{v1, . . . , vn} and a matrix
V = [v1 . . . vn]. A special choice forvi is the eigenvectors corresponding to the smallest
eigenvalues of̃A, henceÃvi = λi vi , 0<λ1≤ λn . . . ≤ λm.

The operatorP defined byP= I −V E−1(ÃV)T with E= (ÃV)TV is a projection with
the following properties (the matrixE ∈Rn×n is symmetric and positive definite):

THEOREM4.1. The operator P has the following properties:

(i) PV = 0 and PT ÃV = 0,
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(ii) P2 = P,
(iii) ÃP = PT Ã.

Proof. Properties (i) and (iii) are easily checked. The proof of (ii) runs as follows:

P2 = (I − V E−1(ÃV)T)(I − V E−1(ÃV)T)

= P − V E−1(ÃV)T + V E−1(ÃV)TV E−1(ÃV)T = P. ■

COROLLARY 4.1. The matrixÃP is symmetric and positive semi-definite.

Remark 4.1. Whenvi are eigenvectors of̃A with norm equal to 1 thenP= I −V VT

becausevT
i v j = δi j .

We assume that the start vectorx0 is zero, otherwise the Deflated ICCG algorithm should
be applied toA(x− x0)= b− Ax0. To speed up the convergence of ICCG we assume that
the spaceV is chosen such that it contains the slow converging components and split the
vectory into two parts

y = (I − P)y+ Py. (12)

The first part (I − P)y is the component ofy contained inV, whereas the second partPy
is perpendicular toV in the(., .)Ã inner product. The first part is determined from

(I − P)y = V E−1(ÃV)Ty = V E−1VTb̃. (13)

(I − P)y is cheaply computable because the dimensions ofE(n× n) are much less than
the dimensions ofA(m×m). To compute the second partPy we useÃPy= PT Ãy= PTb̃
and solvey from

PT Ãy= PTb̃. (14)

The singular system (14) has a solution becausePTb̃ is an element of the Range (PT Ã). A
solutiony of (14) may contain an arbitrary element of Null(PT Ã)=V. SincePV= 0, Py
is uniquely determined.

When we apply the CG algorithm to the symmetric positive semi-definite system (14)
we get the deflated ICCG algorithm:

DICCG1.

k = 0, y0 = 0, p̃1 = r̃0 = PTL−1b,
while ‖r̃k‖2 > ε do

k = k+ 1;
αk = (r̃k−1,r̃k−1)

( p̃k,PT Ãp̃k)
;

yk = yk−1+ αk p̃k;
r̃k = r̃k−1− αk PT Ãp̃k;
βk = (r̃k,r̃k)

(r̃k−1,r̃k−1)
;

p̃k+1 = r̃k + βk p̃k;
end while

In order to get an approximation ofy (=LTx) the vectoryk is multiplied byP and substituted
into (12).

In order to determine the matrixV we have to compute (or approximate) the eigenvectors
of the matrix Ã. Unfortunately these eigenvectors contain many nonzero elements in our
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application. Furthermore they are hard to predict on physical grounds. The eigenspace of
the matrixL−TL−1A corresponding to then smallest eigenvalues can be approximated by
the span ofn vectors, which are obtained on physical grounds. In Section 5 it appears that
these vectors have only nonzero elements in one high-permeability layer and its neighboring
low-permeability layers. For that reason we rewrite the deflated ICCG algorithm as follows:

Define P̄= L−T PLT, r̃k= PTL−1rk= L−1P̄Trk= L−1r̂k, with r̂k= P̄Trk, and zk=
L−TL−1r̂k. Sinceyk= LTxk and LTxk= LTxk−1+αp p̃k, we choosep̃k= LT pk. Substi-
tution in DICCG1 leads to

DICCG2.
k = 0, r̂0 = P̄Tr0, p1 = z1 = L−TL−1r̂0;
while ‖r̂ k‖2 > ε do

k = k+ 1;
αk = (r̂k−1,zk−1)

(pk,P̄T Apk)
;

xk = xk−1+ αk pk;
r̂k = r̂k−1− αk P̄T Apk;
zk = L−TL−1r̂k;
βk = (r̂k,zk)

(r̂k−1,zk−1)
;

pk+1 = zk + βk pk;
end while

It is easy to verify that the projection̄P= L−T PLT has the following properties:

Properties ofP̄.

1. P̄= I − V̄ E−1(AV̄)T whereV̄ = L−TV andE= (ÃV)TV = (AV̄)TV̄ ,
2. P̄V̄ = 0, andP̄T AV̄ = 0,
3. P̄T A= AP̄.

The vectorx can be split into two parts (compare Eq. (12)):

x = (I − P̄)x + P̄x. (15)

The first part can be calculated as

(I − P̄)x = V̄ E−1V̄ Ax= V̄ E−1V̄Tb.

For the second part we project the solutionxk obtained from DICCG2 tōPxk.
For the special choice thatvi are eigenvectors of̃A, v̄i are eigenvectors ofL−TL−1A. In

that case the projection can be written asP̄= I − V̄(LLTV̄)T.
A well known convergence result for CG applied toÃy= b̃ is [25, p. 187]

‖y− yk‖Ã ≤ 2‖y− y0‖Ã

(√
K − 1√
K + 1

)k

, (16)

where K = K2(Ã)= λm/λ1. Since the results obtained from DICCG1 and DICCG2 are
equal we restrict our convergence research to DICCG1. When we chooseV = [v1 . . . vn]
wherevi are the normalized eigenvectors ofÃ, it is easy to verify that

PT Ãvi = 0 for i = 1, . . . ,n,

PT Ãvi = λi vi for i = n+ 1, . . . ,m.
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On the space span{vn+1, . . . , vm} the norm‖ · ‖PT Ã=‖ · ‖ÃP is well defined. Using this
norm together with inequality (16) it can be proved that

‖Py− Pyk‖2 ≤ 2
√

K‖Py− Py0‖2
(√

K − 1√
K + 1

)k

,

whereK = λm/λn+1. This inequality predicts a speed up of convergence whenλn¿ λn+1.
SincePy andPyk are elements of span{vn+1, . . . , vm} the following expression holds:

‖PTb̃− PT Ãyk‖2 = ‖ÃPy− ÃPyk‖2 ≥ λn+1‖Py− Pyk‖2. (17)

So the following termination strategy can be used: estimateλn+1 via Kaasschieter’s method
[22] and terminate DICCG1 when

‖PTb̃− PT Ãyk‖2 ≤ ε

λn+1
.

This together with inequality (17) implies that‖Py− Pyk‖2≤ ε.
In Kaasschieter [22] the termination criterion is derived for the unpreconditioned system

Ax= b. It is easy to generalize this to the preconditioned systemL−1AL−Ty= L−1b. In
DICCG2 the criterion is also used when CG is applied to the left preconditioned system
M−1Ax=M−1b, whereM = LTL. A similar termination strategy can be applied using the
(in)equalities

‖x − xk‖2 = ‖A−1M M−1rk‖2 ≤ ‖(M−1A)−1‖2‖M−1rk‖2 ≤ 1

λmin
‖M−1rk‖2.

Sinceσ(M−1A)= σ(L−1AL−T), Kaasschieter’s procedure to estimate the smallest eigen-
value can be used, which leads to the stopping criterion‖M−1rk‖2<λminε.

5. A CHOICE OF PROJECTION VECTORS

A good choice of the projection vectors is important to obtain an efficient Deflated ICCG
method. In this section we restrict ourselves to the class of problems defined in Section 2.
An analysis of the matrix (Section 3) shows that the spectrum of this matrix contains many
small eigenvalues (of order 10−7). For the preconditioned matrix, the number of small
eigenvalues is drastically reduced. This number is proportional to the amount of sandstone
layers. In Section 4 a Deflated ICCG method is given, which is very suitable to problems
where the matrix has a small number of extreme eigenvalues.

We consider the problem as shown in Fig. 1. As a first choice we takev1, v2, v3 equal to
the three eigenvectors of̃A corresponding to the small eigenvalues. We use DICCG1 with
P= I −V VT. The vectorsvi should be stored, so 3m extra memory positions are needed.
Furthermore in every iteration of DICCG1, the projectionP should be applied to a vector,
which costs three inner products and three vector updates extra per iteration.

Drawbacks of this choice are:

1. the determination of the eigenvectors can be expensive,
2. the amount of extra memory and work per iteration grows, when the number of small

eigenvalues increases.

For the determination of the eigenvectors an inverse (Krylov) iteration can be used, however
this costs more work than the solution of the original system. In our application the fluid
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FIG. 4. The vertical cross section of the eigenvectors corresponding to the small eigenvalues.

pressure is needed in every time iteration. The differences in the matrices in consecutive
time-steps are relatively small. In such a problem DICCG1, with eigenvectors as projection
vectors, can be feasible when the eigenvectors are only computed at a small number of time
steps.

Because of these drawbacks we use another approach, motivated by the properties of
the eigenvectors ¯vi = L−1vi of L−TL−1A, corresponding to the small eigenvalues. For the
problem considered a vertical cross section of the eigenvectors is plotted in Fig. 4. The
cross-sections have the following properties:

—their value is constant in sandstone layers,
—their value is zero in the first sandstone layer,
—in the shale layers their graph is linear.

So the space span{v̄1, v̄2, v̄3} is identical to the space span{w1, w2, w3}, where the vertical
cross sections ofwi are defined by

—the value ofwi is one in thei + 1th sandstone layer and zero in the other sandstone
layers,

—their graph is continuous in the whole domain and linear in the shale layers.

So instead of DICCG1 with the eigenvectors, DICCG2 is applied withV = span{w1, w2, w3}.
Since the vectorswi are no eigenvectors it is necessary to storewi and Awi . Due to the
sparseness two memory vectors are sufficient to store allwi . Furthermore, the elements of
Awi are only nonzero at the grid points connected to the interfaces of thei th shale layer.
Thus two memory vectors are also sufficient to store all vectorsAwi . In the same way the
sparseness can be used to save CPU time. It is possible to implement the projection so that
the extra amount of work per iteration is less than two inner products and two vector updates



398 VUIK, SEGAL, AND MEIJERINK

independent of the number of small eigenvalues. This makes the DICCG2 algorithm very
attractive for this kind of problems.

We have also solved problems where shale and sandstone layers are slightly curved.
Again DICCG2, with projection vectors defined in the same way as above, proved to be
an efficient solution algorithm. If we assume that the sandstone layers without a Dirichlet
condition are numbered from 1 ton, then we propose to use DICCG2 with the projection
vectorswi chosen as:

—the value ofwi is one in thei th sandstone layer and zero in the other sandstone layers,
—in the shale layers,wi satisfies

−div(σ∇wi ) = 0, (18)

and on the interfaces it satisfies a Dirichlet boundary condition equal to the constant value
0 or 1 of the neighboring sandstone layer.

For our original problem, this choice leads to the same projection vectors as before. The
solution of (18) amounts to solving the same system of equations at a much smaller domain
without the extreme contrasts in the coefficients. In fact this process is similar to a domain
decomposition method (compare [12, 16]).

6. NUMERICAL EXPERIMENTS

In order to test the Deflated ICCG method we have applied DICCG2 to the seven straight
layers problem defined in Section 2. The three projection vectors are defined as in the pre-
vious section. For this straight layers case these vectors span exactly the space of the three
eigenvectors corresponding to the small eigenvalues. Figure 5 shows the convergence be-
havior of the DICCG2 method, the estimate of the smallest eigenvalue as well as the true
error. To facilitate comparison the norm of the error using ICCG and DICCG2 is given in
Fig. 6. Since one iteration of DICCG2 costs approximately 30% more CPU time than one

FIG. 5. Convergence behavior of DICCG2 for the straight layers problem.
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FIG. 6. Norm of the error for the straight layers problem.

iteration of ICCG, we have a large improvement when the deflated method is used. Besides
that, the decrease of the residual is now a measure for the error, so that we have a reliable
termination criterion.

Our intention is to use the DICCG2 method also for more complicated regions, where
we only have “approximate” eigenvectors. Therefore we have replaced the straight layers
in our example by curved layers as shown in Figs. 7 and 8. Both domains are a subset

FIG. 7. Mesh used in the parallel arcs layered problem.
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FIG. 8. Mesh used for straight and curved layers.

R2. The number of elements is exactly the same as for the straight layers region. For these
examples the graphs of the vertical cross sections of the eigenvectors are no longer linear
in the shale layers. Nevertheless we use exactly the same projection vectors in DICCG2 as
for the straight layers problem. The convergence behavior of the DICCG2 method applied
to the mesh of Fig. 7 is shown in Fig. 9. The number of iterations has been increased
compared to the straight layers case, but the overall behavior is the same. Application of the

FIG. 9. Convergence behavior of DICCG2 for the parallel arcs problem.
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DICCG2 method to the mesh of Fig. 8 leads to the same convergence behavior as the one
for the straight layers (Fig. 5). Presumably, the projection vectors are good approximations
of the eigenvectors in these cases, although the relative difference between them is of order
10−1. From our limited number of experiments it is clear that the DICCG2 method is an
enormous improvement compared to the classical ICCG method, provided the approximate
eigenvectors are a reasonable estimate of the true eigenvectors.

7. CONCLUSIONS

It has been shown that the preconditioned Conjugate Gradient method for layered prob-
lems with extreme contrasts in the coefficients has a very erratic convergence behavior. The
residual shows large bumps and moreover the decrease of the residual cannot be used as re-
liable termination criterion. Only when all eigenvectors corresponding to small eigenvalues
are detected, which means that the smallest Ritz values are converged to the smallest eigen-
values, is the convergence behavior more or less as usual. In order to solve this problem a new
method called DICCG has been developed that projects the contribution of the eigenvectors
corresponding to the small eigenvalues onto the null space. This new method has excellent
convergence properties and, more important, a reliable termination criterion. Even if we use
approximations of these eigenvectors based on physical arguments still the deflated ICCG
method performs very well.

It is our aim to apply the DICCG method to large time-dependent 3D problems with a
realistic number and shape of layers. A point to be solved, however, is how to create the
approximate eigenvectors in more general configurations including inclusions. We think that
it is sufficient to solve the original problem for each completely enclosed shale layer with
appropriate boundary conditions. Since we are only dealing with approximate eigenvectors
we expect that the solution of the subproblem may be done with moderate accuracy. The
choice of the approximate eigenvectors, as well as the sensitivity of the method to the
accuracy of these approximate eigenvectors, is the subject of our present research.
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